Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(4): e0296214, 2024.
Article in English | MEDLINE | ID: mdl-38625985

ABSTRACT

We aimed to investigate whether two closely related but socially distinct species of gerbils differ in personality patterns. Using a suit of multivariate repeated assays (docility test, dark-light emergence test, startle test, novel object test, elevated platform test, and stranger test), we assessed contextual and temporal consistency of docility, boldness, exploration, anxiety, and sociability in the solitary midday gerbil, Meriones meridianus, and social Mongolian gerbil, M. unguiculatus. We revealed contextually consistent and highly repeatable sex-independent but species-specific personality traits. Species differed in temporal repeatability of different behaviours, and contextual consistency was more pronounced in solitary M. meridianus than in social M. unguiculatus. This finding contradicts the social niche specialization hypothesis, which suggests that personality traits should be more consistent in more social species. Instead, we hypothesize that social complexity should favour more flexible and less consistent behavioural traits. The habituation effect indicative of learning abilities was weak in both species yet stronger in social M. unguiculatus, supporting the relationship between the sociality level and cognitive skills. In both species, only a few different behavioural traits covaried, and the sets of correlated behaviours were species-specific such that the two species did not share any pair of correlated traits. Between-species differences in personality traits, habituation, and behavioural syndromes may be linked to differences in sociality. The lack of prominent behavioural syndromes is consistent with the idea that context-specific individual behavioural traits might be favoured to allow more flexible and adequate responses to changing environments than syndromes of correlated functionally different behaviours.


Subject(s)
Behavior, Animal , Personality , Animals , Gerbillinae , Behavior, Animal/physiology , Personality/physiology , Social Behavior , Personality Disorders
2.
Integr Zool ; 18(3): 414-426, 2023 May.
Article in English | MEDLINE | ID: mdl-36226603

ABSTRACT

We tested for the effects of latitude and geographic range size (GRS) on body size, leg length, and sexual size dimorphism (SSD) across 103 species of fleas, taking into account phylogenetic between-species relationships. When the data on body size were combined for males and females, the positive correlation between body size and latitude, but not GRS, was revealed. When the analysis was restricted to one sex only, the effect of latitude appeared to be non-significant for females, whereas male body size increased with an increase in latitude. Intraspecific body size variation was not associated with either the latitude or the latitudinal span of the geographic range, independently of which data subset was analyzed. No evidence of association between size-independent tibia length and latitude was found for either females, males, or both sexes combined. The degree of SSD decreased with a decrease in latitude but was not affected by GRS. We conclude that macroecological patterns might be manifested differently in males and females. This should be kept in mind while searching for these patterns.


Subject(s)
Sex Characteristics , Siphonaptera , Female , Male , Animals , Phylogeny , Body Size
3.
Int J Parasitol ; 51(8): 659-666, 2021 07.
Article in English | MEDLINE | ID: mdl-33713646

ABSTRACT

Biotic and abiotic stressors impose various fitness costs on individuals across a variety of taxa. In vertebrates, these stressors typically trigger complex neuroendocrine responses that stimulate glucocorticoid (GC) secretion from the adrenal cortex. Short-term elevation of GCs can be adaptive as it shifts energy toward physiological processes that cope with acute stressors; however, chronic increases in GC levels could have detrimental effects on fitness. Parasitism can be considered an important biotic stressor in nature and a possible cause of reproductive failure that could substantially affect an individual's fitness. Thus, we aimed to test the effects of parasitism and maternal stress, as measured by GCs, during pregnancy and the relationship between these variables and measures of reproductive output using a rodent-flea system. Female Egyptian spiny mice (Acomys cahirinus) were randomly assigned to flea (Parapulex chephrenis) infested or uninfested treatments before and during pregnancy. The offspring of these females were flea-free. Feces were collected at five time points during the experiment to determine maternal fecal glucocorticoid metabolite (FGCM) concentrations. Overall, infested females had lower FGCM levels during gestation but higher FGCM levels post-parturition and larger mass changes than uninfested females. Additionally, models related to pup quality and quantity often included some measure of maternal investment or body condition moderating relationships between infestation and stress. This suggests that flea parasitism or high GC levels alone might not significantly impact host reproduction but rather females can experience different effects depending on their level of investment, which could be limited by body condition and/or the number of pups present in a litter.


Subject(s)
Host-Parasite Interactions , Siphonaptera , Animals , Female , Murinae , Pregnancy , Reproduction , Stress, Physiological
4.
J Anim Ecol ; 89(12): 2888-2895, 2020 12.
Article in English | MEDLINE | ID: mdl-32936457

ABSTRACT

Harrison's rule states that parasite body size and the body size of their hosts tend to be positively correlated. After it was proposed a century ago, a number of studies have investigated this trend, but the support level has varied greatly between parasite/host associations. Moreover, while the rule has been tested at the individual species level, we still lack knowledge on whether Harrison's rule holds at the scale of parasite and host communities. Here, we mapped flea (parasites) and rodent (hosts) body sizes across Mongolia and asked whether Harrison's rule holds for parasite/host assemblages (i.e. whether a parasite's average body size in a locality is positively correlated with its host's average body size). In addition, we attempted to disentangle complex relationships between flea size, host size and environmental factors by testing alternative hypotheses for the determinants of fleas' body size variation. We gathered occurrence data for fleas and rodents from 2,370 sites across Mongolia, constructed incidence matrices for both taxa and calculated the average body sizes of fleas and their hosts over half-degree cells. Then, we applied a path analysis, accounting for spatial autocorrelation, trying to disentangle the drivers of the correlation between parasite and host body sizes. We found a strong positive correlation between average flea and host size across assemblages. Surprisingly though, we found that environmental factors simultaneously affected the body sizes of both fleas and hosts in the same direction, leading to a most likely deceptive correlation between parasite and host size across assemblages. We suggest that environmental factors may, to a great extent, reflect the environmental conditions inside the hosts' burrows where fleas develop and attain their adult body size, thus influencing their larval growth. Similarly, rodent body size is strongly influenced by air temperature, in the direction predicted by Bergmann's rule. If our findings are valid in other host-parasite associations, this may explain the dissenting results of both support and lack thereof for Harrison's rule.


Subject(s)
Parasites , Siphonaptera , Animals , Body Size , Host-Parasite Interactions
5.
Parasitology ; 147(1): 78-86, 2020 01.
Article in English | MEDLINE | ID: mdl-31452472

ABSTRACT

Both parasitism and social contact are common sources of stress that many gregarious species encounter in nature. Upon encountering such stressors, individuals secrete glucocorticoids and although short-term elevation of glucocorticoids is adaptive, long-term increases are correlated with higher mortality and deleterious reproductive effects. Here, we used an experimental host-parasite system, social rodents Acomys cahirinus and their characteristic fleas Parapulex chephrenis, in a fully-crossed design to test the effects of social contact and parasitism on stress during pregnancy. By analysing faecal glucocorticoid metabolites, we found that social hierarchy did not have a significant effect on glucocorticoid concentration. Rather, solitary females had significantly higher glucocorticoid levels than females housed in pairs. We found a significant interaction between the stressors of parasitism and social contact with solitary, uninfested females having the highest faecal glucocorticoid metabolite levels suggesting that both social contact and infestation mitigate allostatic load in pregnant rodents. Therefore, the increased risk of infestation that accompanies group-living could be outweighed by positive aspects of social contact within A. cahirinus colonies in nature.


Subject(s)
Flea Infestations/physiopathology , Siphonaptera/physiology , Stress, Physiological/physiology , Animals , Behavior, Animal/physiology , Feces/chemistry , Female , Glucocorticoids/analysis , Murinae/parasitology , Murinae/physiology , Pregnancy , Rodent Diseases/parasitology , Rodent Diseases/physiopathology , Social Behavior
6.
Parasitol Res ; 118(7): 2087-2096, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31104107

ABSTRACT

We tested whether and how the maternal environment (i.e. host species exploited by a mother), rearing conditions (i.e. host species exploited by her offspring) or both (i.e. matches and mismatches in host species exploited by a mother and her offspring) affect reproductive performance in the offspring. We experimentally manipulated maternal and rearing environments in two generalist fleas (Xenopsylla conformis and Xenopsylla ramesis) implementing a factorial cross-rearing design. Mothers exploited either the principal host (PH) or auxiliary hosts that were either closely (CAH) or distantly related (DAH) to the PH. After six generations of infesting a given host species, we cross-reared fleas within and between host species. These fleas reproduced and we measured their reproductive performance both quantitatively (i.e. egg number) and qualitatively (i.e. egg size, development time, body size of the next generation). We found that identity of the host a flea was reared on (=actual host) had the strongest effect on its performance. Individuals reared on the PH performed considerably better than those reared on either auxiliary host. Moreover, fleas reared on a CAH performed better than those reared on a DAH. Actual host identity also had a stronger effect on reproductive performance in X. ramesis than in X. conformis. Nevertheless, there was no difference in performance between match and mismatch maternal and actual host identities. We conclude that rearing environment has the strongest effect on fitness in generalist parasites. Moreover, phylogenetic distance between an auxiliary host and the PH determines the level of suitability of the former.


Subject(s)
Flea Infestations/parasitology , Host-Parasite Interactions , Xenopsylla/physiology , Animals , Body Size , Disease Models, Animal , Environment , Female , Host Specificity , Male , Phylogeny , Reproduction , Rodentia
7.
Parasitology ; 146(5): 653-661, 2019 04.
Article in English | MEDLINE | ID: mdl-30430954

ABSTRACT

The ß-diversity of fleas parasitic on small mammals in 45 regions of the Palearctic was partitioned into species [species contributions to ß-diversity (SCBD)] and site ( = assemblage) contributions [local contributions to ß-diversity (LCBD)]. We asked what are the factors affecting SCBD and LCBD and tested whether (a) variation in ecological, morphological, life history and geographic traits of fleas can predict SCBD and (b) variation in flea and host community metrics, off-host environmental factors, host species composition of flea assemblages can predict LCBD. We used spatial variables to describe geographic distribution of flea assemblages with various LCBD values. SCBD significantly increased with an increase in abundance and a decrease in phylogenetic host specificity of a flea as well as with size and latitude of its geographic range, but was not associated with any morphological/life history trait. LCBD of flea assemblages did not depend on either flea or host species richness or environmental predictors, but was significantly affected by compositional uniqueness ( = LCBD) of regional host assemblages and variables describing their species composition. In addition, variation in LCBD was also explained by broad-to-moderate-scale spatial variables. We conclude that SCBD of fleas could be predicted via their ecological and geographic traits, whereas LCBD of their assemblages could be predicted via host composition.


Subject(s)
Biodiversity , Eulipotyphla , Flea Infestations/veterinary , Lagomorpha , Rodentia , Siphonaptera/physiology , Africa, Northern/epidemiology , Animal Distribution , Animals , Asia/epidemiology , Europe/epidemiology , Flea Infestations/epidemiology , Flea Infestations/parasitology , Host-Parasite Interactions
8.
Int J Parasitol ; 48(12): 969-978, 2018 10.
Article in English | MEDLINE | ID: mdl-30076911

ABSTRACT

The aims of this study were to determine whether sexual size dimorphism in fleas and gamasid mites (i) conforms to Rensch's rule (allometry of sexual size dimorphism) and (ii) covaries with sex ratio in infrapopulations (conspecific parasites harboured by an individual host), xenopopulations (conspecific parasites harboured by a population of a given host species in a locality) and suprapopulations (conspecific parasites harboured by an entire host community in a locality). Rensch's rule in sexual size dimorphism was tested across 150 flea and 55 mite species, whereas covariation between sexual size dimorphism and sex ratio was studied using data on ectoparasites collected from small mammalian hosts in Slovakia and western Siberia. For fleas, we controlled for the confounding effect of phylogeny. The slope of the linear regression of female size on male size was significantly smaller than 1 in fleas, but did not differ from 1 in mites. The proportion of males in flea infrapopulations significantly increased with an increase in the female-to-male body size ratio. The same was true for obligatory haematophagous mites. No relationship between sex ratio and sexual size dimorphism was found for xenopopulations of either taxon or for mite suprapopulations. However, when controlling for the confounding effect of phylogeny, a significant negative correlation between sex ratio and sexual size dimorphism was revealed for flea suprapopulations. We conclude that (i) some macroecological patterns differ between ectoparasite taxa exploiting the same hosts (allometry in sexual size dimorphism), whereas other patterns are similar (sexual size dimorphism-sex ratio relationship in infrapopulations), and (ii) some patterns are scale-dependent and may demonstrate the opposite trends in parasite populations at different hierarchical levels.


Subject(s)
Body Size , Ectoparasitic Infestations/veterinary , Mites/anatomy & histology , Mites/classification , Sex Ratio , Siphonaptera/anatomy & histology , Siphonaptera/classification , Animals , Ectoparasitic Infestations/parasitology , Moles/parasitology , Rodentia/parasitology , Shrews/parasitology , Siberia , Slovakia
9.
Oecologia ; 188(2): 559-569, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30046920

ABSTRACT

We studied the relationships between body size and (a) abundance and (b) host specificity in fleas parasitic on small mammals (rodents and shrews) in the Palearctic taking into account the confounding effect of phylogeny. We tested these relationships both across 127 flea species and within separate phylogenetic clades, predicting higher abundance and lower host specificity (in terms of the number or diversity of hosts used by a flea) in smaller species. We also tested for the relationships between body size and abundance separately for species that spend most of their lives on a host's body (the "body" fleas) and species that spend most of their lives in a host's burrow or nest (the "nest" fleas). A significant phylogenetic signal in body size was detected across all fleas, as well as in five of six separate clades. Across all fleas and in majority of phylogenetic clades, mean abundance significantly increased with an increase in body size. The same pattern was found for both the "body" and the "nest" fleas, although the slope of the relationship appeared to be steeper in the former than in the latter. Neither measure of host specificity demonstrated a significant correlation with body size regardless of the subset of flea species analysed. We explain higher abundance attained by larger flea species by higher fecundity and/or competitive advantage upon smaller species at larval stage. We conclude that the macroecological patterns reported to date in parasites are far from being universal.


Subject(s)
Parasites , Siphonaptera , Animals , Body Size , Host-Parasite Interactions , Mammals , Phylogeny
10.
Oecologia ; 182(4): 1075-1082, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27660203

ABSTRACT

Theory predicts that due to their resilience, ecosystems and populations are expected to respond to environmental changes not gradually, but in a nonlinear way with sudden abrupt shifts. However, it is not easy to observe and predict the state-and-transition dynamics in the real world because of time lags between exogenous perturbations and species response. Based on yearly surveys, during 21 years (1994-2014), we have studied population dynamics of a desert rodent (the midday gerbil, Meriones meridianus) in the rangelands of southern Russia under landscape change from desert to steppe caused by the drastic reduction of livestock after the collapse of the USSR in the early 1990s. The population of M. meridianus has remained robust to landscape change from desert to steppe for over 10 years, but then has suddenly dropped down and has not recovered since. The step transition from the high- to low-abundance density-regulated equilibrium was accompanied by an abrupt increase in the spatio-temporal population variability, which may indicate the loss of population resilience. We explain inertia in species response to landscape change and an abrupt regime shift in population dynamics by species-specific ecology and life-history combined with habitat fragmentation that had reached a certain critical threshold level by the early 2000s. This is a rare well-documented demonstration of a delayed threshold response of a wild unexploited mammal population to human-induced environmental change, which may shed light on the mechanisms of population resilience and underlying causes of threshold population dynamics in a changing world.


Subject(s)
Ecology , Population Dynamics , Animals , Ecosystem , Environment , Humans , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...